If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+15x+4=0
a = 6; b = 15; c = +4;
Δ = b2-4ac
Δ = 152-4·6·4
Δ = 129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{129}}{2*6}=\frac{-15-\sqrt{129}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{129}}{2*6}=\frac{-15+\sqrt{129}}{12} $
| 8y=-4y-24 | | 8y=-4y-2 | | y=-4y-24 | | 4(x-6)-3x=-24+x | | (12.25+x)0.06+0.06=19.08 | | 10(z+2)-4(z-2)=2(z-2)+3(z-4) | | 7-z=18 | | 3(r+7)+6r=47 | | 92/(36-x)=4 | | x/(-7)=14 | | (25+x)/3=27 | | 3x-2=-7x+28 | | 15=-4p+4 | | 4c=3+c+4 | | (8x/2x3)-1=23 | | Yx.6=80 | | 7x+13+86+15x=19 | | 14(x-10)=84 | | 5z+2=3z+14 | | 12x+16=7x+8 | | 8k^2-12k-4=0 | | x2+4=72 | | (2y-4)-(9y-1)=-7-3 | | 6x—9x-4=-2x-2 | | -2/7(x)=8 | | P=5r=6 | | 2x2–10x–72=0 | | 44=28-4(x-1) | | 7=n+61 | | 44+36x+2+58x=2 | | 5x-6+4=2x-14 | | k/4+7=29 |